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Taking the beam-plasma system as a reference Hamiltonian system with many degrees of freedom, the
connection between the development of large amplitude oscillations and stochasticity of the system(measured
through the time-dependent maximum Lyapunov exponent) is investigated. It is found that the development of
self-consistent large amplitude oscillations occurs in correspondence with the onset of chaos, and is related to
a well defined change of topology of the phase space of the system. It is also shown that in a(Hamiltonian)
linearly stable regime the development of large amplitude oscillations can occur when weakly dissipative
processes are introduced.
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I. INTRODUCTION

The nonlinear development of a perturbation in a colli-
sionless plasma is a topic thoroughly investigated in the lit-
erature, both analytically and numerically[1–3]. Even in its
simplest, one-dimensional, formulation, it can reveal new
features, which happen to be of interest for a variety of
physical systems, whenever these features derive from the
quite generic Hamiltonian structure of the system, as in the
present case. Here, we refer explicitly to a beam-plasma sys-
tem, which can be considered a paradigm for the study of
plasma-wave interaction and vortex formation in phase
space, and perform a Hamiltonian analysis, which can there-
fore be directly extended to other systems, e.g., Compton
FEL [4], self-interacting stars[5], interacting vortices in 2D
fluids [6], the common link among them being the structure
of the N- particle Hamiltonian.

The system is initially very close to an equilibrium con-
dition where the field is almost zero, and energy and momen-
tum mostly reside in the particles. It is then followed during
its whole evolution, looking for conditions where self-
sustained large oscillations of the field are produced. This
process is studied in the literature using either the full
Vlasov-Poisson system, or the corresponding Hamiltonian
model, in which the beam is represented by an ensemble of
N particles. It is found that a single parameterD character-
izes the system evolution: when its value is larger than a well
defined critical valueDc (linear or stable regime) the field
amplitude exhibits small periodic deviations from its initial
value during the whole evolution; whenD,Dc (nonlinear or
“unstable” regime) large amplitude oscillations of the field
occur on the long time scale. Note that, as far as the linear
analysis is valid, the motion of theN-particle system is fully
integrable, and stochasticity is absent: this applies both to the
stable regime and to the initial stage of the unstable regime.
Therefore, stochasticity, if arises, can occur only in the fully
nonlinear regime. Here, stochasticity refers to theN particle
system representing the beam, i.e., to the motion of the rep-

resentative point in the 2N-dimensional phase space, the de-
gree of stochasticity of the system being measured by the
value of the largest Lyapunov exponent. The aim of the
present paper is to find the relation between the onset of
stochasticity in the dynamics of the system and the transition
to a nonlinear stage characterized by large field amplitude
oscillations.

The main result is the following: the development of self
consistent large oscillations entails the occurrence of sto-
chasticity, i.e., starting from a condition with vanishingly
small field, large oscillations can be excited in the Hamil-
tonian system only when stochasticity arises. This process is
connected to a topological transition in the 2N-dimensional
phase space of the beam. Such a transition can occur even
when the system is initially linearly stable, if a dissipative
mechanism is taken into account, which relaxes the Hamil-
tonian constraints. We show that this occurs in the system
under consideration, when radiation damping or frictional
effects are introduced.

The phase space analysis of the dynamics of the system is
presented in Sec. II. The analysis of stochasticity and the role
of weakly dissipative effects are presented in Sec. III. The
last section is devoted to short concluding remarks.

II. PHASE SPACE ANALYSIS

The system is made up of a monoenergetic beam, of den-
sity nb and velocityVb, represented byN particles; a Max-
wellian electron bulk, of densityn0, which responds linearly
to the field, through the dielectric permittivityesk,vd, and a
cold, uniform ion background, providing charge neutrality.
The electric field is determined self-consistently by the Pois-
son equation, and is initially present as a seed, i.e., as a
plasma wave with very small amplitude. Phase velocities
much larger than the electron thermal speed are assumed[3].
The beam distribution function can be written asfb
=1/sL'

2 v'
2 do j=1

N dsx−Xjddsv−Vjd, whereL' andv' formally
represent the(transverse) scales of the system in configura-
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tion and velocity space. The beam densitynb is related toN
by N=nbL'

2 L, where L denotes the assumed periodicity
length of the system alongx. Under the simplifying assump-
tion of a single wave mode, the self-consistent dynamics of
the system is described by the following time independent
Hamiltonian withN+1 degrees of freedom:

Hsu j,Pj,c,Id =
1

2o
j=1

N

Pj
2 − 2Î I

N
o
j=1

N

cossu j − cd, s1d

where all variables are dimensionless, the canonical mo-
menta Pj are related to the particle velocitiesVj by Pj
=b −2/3skVj −v0d /vp, and the phasesu j to particle positions
Xj by u j =kXj, wherek=2p /L, b2=nb/ sn0vpu]ve0ud, andv0

the solution of the relevant dispersion relationesk,vd=0,
with ]ve0=s]e /]vdv=v0

. The action-angle variablesI, c are
related to the dimensional electric fieldE by E
=2b 4/3vp

2m/eksI /Nd1/2 sinskx−cd. The time variable rel-
evant to the Hamiltonian(1) is t= tvpb2/3. The essential fea-
tures of the fully nonlinear dynamics of the system are re-
tained in this model, even if a single wavelength is taken into
account[1,7]. The Hamiltonian(1) has the following con-
stant of motion:

o
j

Pj + I = o
j

Pj0 + I0 = ND, s2d

whereD is a constant. Here, we are interested in the time
behavior of the system for a specific initial condition, i.e., a
small field perturbationssI0/N<e!1d, and an almost mono-
chromatic beam. In this case, the parameterND represents
the initial momentum of the beam in the wave frame, and
D<f2n0/nbsv /vpdg1/3sVb/Vph−1d, where Vph is the phase
velocity of the plasma wave for the case under consideration.
It is found that the behavior of this system critically depends
on D [1]. When D is larger than the critical valueDc
=3/22/3<1.89, the field amplitude remains very small dur-
ing the whole evolution of the system, and the beam elec-
trons move very close to their unperturbed orbits. When
D,Dc (i.e., at lower beam velocity or/and higher beam den-
sity) a considerable fraction of the beam energy can be trans-
ferred to the plasma waves. This specific behavior of the
system has been observed and analyzed in detail for the
Compton regime of a free-electron laser(see, e.g., Ref.[4],
and references therein).

Assuming that the electric field is small and behaves as
expsiltd, the following dispersion relation can be obtained
from the linearized dynamics of the system(1) around the
given initial condition[4]

l3 − Dl2 + 1 = 0. s3d

For D.Dc, Eq. (3) has three real solutions corresponding to
stable modes, while forDøDc, there are one real and two
complex conjugate solutions, and the field evolution is de-
scribed by the proper superposition of the three linear modes.
Quite naturally, the perturbative analysis of the system de-
scribes correctly the evolution of the system as long as the
field is small. In the unstable case, the results of the analysis
are valid for short time, and fail in the asymptotic limit due
to the presence of the exponentially growing solution. Three

stages can be identified in the time evolution of the field.
Initially, there is a lethargy stage(for t& uImsldu−1), in which
the field amplitude is determined by all the three roots of the
dispersion, then the field grows exponentially as
expfuImsldutg, and finally it saturates and oscillates around a
finite value. The time behavior of the normalized field am-
plitude A, with A;sI /Nd1/2=sD−o j Pj /Nd1/2 solution of the
Hamilton equations derived by Eq.(1), is shown in Fig. 1 for
different values ofD, corresponding to stable and unstable
cases. It can be observed that the linear solution is also valid
for almost the whole exponential phase in the unstable re-
gime.

We now consider the nonlinear investigation of the sys-
tem. From Eq.(1) by means of a canonical transformation,
and using the constant of motion, one obtains aN degrees of
freedom Hamiltonian

Hsqj,pjd =
1

2o
j=1

N

spj + Dd2 − 2Î− kplo
j=1

N

cosqj , s4d

wherepj =Pj −D, qj =u j −c, the symbolk¯l=oi=1
N s¯d /N de-

notes average over theN particles, and the constant of mo-
tion now readsI +opj =0. The relevant Hamilton equations
read

q̇j = ] H/] pj = pj + D + kcosql/Î− kpl, s5ad

ṗj = − ] H/] qj = − 2Î− kplsin qj . s5bd

The Hamiltonian(4) can be defined as a “paradigmatic”
Hamiltonian for many different physical systems with a self-
consistent dynamics. It describesN pendulums nonlinearly
coupled, where the self-consistent field has the amplitudeA
=s−kpld1/2.

To get a further understanding of the main features of the
system, we present here the results relevant to the phase
space topology of the Hamiltonian(4), which allows one to
point out the global, long lasting characteristic of the system.
It is found [4] that the phase space is characterized by the
presence of a large number of stationary points of mixed
nature in the 2N-dimensional phase space(ù2N−1, the exact
number depending on the value ofD). Among all these
points, there is an elliptic point of coordinatesqj =0, pj =pe
s j =1,Nd for any D value, and a hyperbolic point, character-

FIG. 1. (Color online) Time behavior of the field amplitudeA
;sI /Nd1/2=sD−o j Pj /Nd1/2 for different values ofD.
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ized byqj =p, pj =ph, s j =1,Nd only for DùDc. In the above
expressionspe andph are solutions of the equation

L3 − DL − a = 0, s6d

with L;s−pd1/2, and a;kcosql= ±1, respectively. Note
that L corresponds to the field amplitude of a system in
which all the particles are in the fixed point(s). Comparing
Eqs.(3) and(6), it is found that the transition to the linearly
unstable regimesDøDcd corresponds to the occurrence of a
topological change in phase space, where the only hyperbolic
point disappears.

A representation of the phase space region where the mo-
tion of the system occurs is given in Fig. 2, where the par-
ticle coordinatessqj ,pjd are plotted in a 2D spacesq,pd, after
a large number of nonlinear oscillations in the unstable re-
gime, for two differentD values. The initial monochromatic
distribution evolves and in the nonlinear saturated stage
spreads in phase space around the elliptic point determined
by Eq. (6). The formation of a hole in the single particle
phase space can be observed, which is quite large forD
values close to the critical valueDc. For decreasingD values,
the hole in phase space shrinks, and the presence of a well
definite bunch of particles becomes more apparent. This
bunch rotates in time around the elliptic point, and is mainly

responsible for the nonlinear field oscillations, as it has been
pointed out in Ref.[3].

Note that this kind of plots are not Poincaré sections,
being obtained just as a projection of the fullN degrees of
freedom dynamics on thesq,pd plane. The investigation of
such plots does not, in general, allow one to draw definite
statements about the stochasticity of a system. Even a inte-
grable N-dimensional system, such as, e.g., that ofN un-
coupled pendulums, can produce similar plots. Therefore, a
more detailed analysis of the stochastic properties of the sys-
tem described by the Hamiltonian(4) is required.

III. STOCHASTICITY AND THE ROLE OF DISSIPATION

To investigate the chaotic dynamics of the system de-
scribed by the Hamiltonian(4), the maximum Lyapunov ex-
ponents` (as defined, e.g., in Ref.[8]) has been numerically
computed for the given initial condition, following the
method outlined by Wolfet al. in Ref. [9]. The used numeri-
cal procedure also determines at any time the finite time
Lyapunov exponentsstd, which tends asymptotically tos`.
The time evolution ofsstd is shown in Fig. 3, for differentD
values in a range close toDc.

For D values corresponding to the stable regimesD.Dcd,
it is found thats decays in time asymptotically following a
power laws~t −a, with a of order unity, indicating the ab-
sence of stochasticity in the considered system. In the case of
the unstable regimesD,Dcd, during the lethargy stage the
finite time Lyapunov exponents decays as in the stable case,
then in the exponential stage of the motion it increases
sharply, and when the nonlinear oscillating regime(at large
amplitude) is established it finally saturates. Asymptotically
in time, s tends to a finite values`, which is almost inde-
pendent ofD. Tests have been made forN values up to 200.
The numerically obtained value ofs` is about 0.3, and de-
pends slightly onN and on the finalt. The value ofs` can
be assumed as an index of the degree of mixing of the phase
space region where the motion of the system occurs. We
have thus shown that the observed sharp variation of the
finite-time Lyapunov exponent is related to the phase transi-
tion in the 2N-dimensional phase space of the system.

We have then investigated the role of weakly dissipative
effects, noting that they can allow a stable condition to be-

FIG. 2. 2D phase space portrait of late time evolution of the
beam particles in an unstable case, forN=105, t=200, and two
different D values. Case(a) corresponds toD=1.88 and case(b) to
D=0. The coordinates of the elliptic point areqj =0, pj =pe=−2.51,
and qj =0, pj =pe=−1, respectively. The initial distribution corre-
sponds to a monochromatic beam, i.e., uniform inq and pj =−2
310−4.

FIG. 3. (Color online) Time behavior of the finite time maxi-
mum Lyapunov exponents for N=50, and the sameD values of
Fig. 1.
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come unstable during the evolution of the system, since the
Hamiltonian constraints are relaxed. In our investigation, we
have first considered radiation damping, as a generic process
which alters the Hamiltonian dynamics. It denotes the reac-
tion force that is included in the motion equation of the par-
ticle to take into account the fact that energy is being carried
out from the system by the waves. It has been shown to play
an important role in different fields, such as, e.g., in accel-
erator physics, in gravitation physics, in the long time evo-
lution of Vlasov-Poisson system[10], in the dynamics of
earthquakes and brittle failures of materials where seismic
waves or phonons are radiated[11], and in general in sys-
tems where Hamiltonians similar to this one can be used.
Note that its presence does not necessarily require emission
of electromagnetic waves from the system. Here radiation
damping is used as a paradigm of dissipative effects.

To include these effects in the Hamiltonian description,
we modify the momentum equation, changingṗj in ṗj −hp̈j,
whereh is a constant parameter andp̈j is computed differ-
entiating Eq.(5b), and using the system(5). This way of
computing the radiation damping, which is in general ap-
proximate, turns to be exact in the electromagnetic case[12].
Then, instead of system(5), the following equations are ob-
tained:

q̇j = pj + D + kcosql/A, s7ad

ṗj = − 2A sin qj − 2hfsqj,pj,Ad, s7bd

Ȧ = ksin ql, s7cd

where

fsqj,pj,Ad = ksin qlsin qj + kcosqlcosqj + spj + DdA cosqj .

s8d

Note that “momentum” conservation does not hold anymore.
To point out the main effects of the dissipation term, we

use arbitraryh values here, which allow one to describe
important modifications of the motion in a “short” computer
time, while being always small enough to describe a slowly
varying perturbation of the Hamiltonian dynamics.

It is found that initially stable conditions evolve towards
instability at long times, and amplification of the electric
field can occur, as it is shown in Fig. 4, where the time
evolution of the amplitudeA is plotted for a conservative
stable casesh=0d and for a slightly dissipative casesh
!1d for the same initial value of the parameterD.Dc. Note
that the nonlinear field oscillations in the saturated regime
are damped by the “dissipation term,” and that the system in
the 2N phase space collapses in the elliptic point asymptoti-
cally in time.

The transition to the high-field regime is again accompa-
nied by a sharp modification of the time evolution of the
finite time maximum Lyapunov exponent, which is shown in
Fig. 5. In the dissipative casesh.0d, s initially behaves as
in the conservative casesh=0d, then jumps to a higher value
when the field amplitude increases, similarly to what ob-

served in the unstable conservative case for the correspond-
ing field amplitudes, and finally on the long time scale it
slowly decays.

To test the generic validity of our results, we have con-
sidered also other different dissipation terms, such as, e.g., a
friction force term to mimic the collisional drag on beam
electrons. Although the detailed dynamics is different in the
two cases(being mainly dependent on the specific choice of
the dissipative term), quite similar results have been obtained
concerning the transition from the stable to the unstable re-
gime, and the related behavior of the finite time Lyapunov
exponent. Again a sudden rise in the value ofsstd occurs
when the wave amplitudeA becomes finite. We then con-
clude that the transition to the unstable regime can develop
from conditions for which the system is stable(i.e., when the
initial beam energy is too large to trigger the instability), if it
is brought naturally to favorable conditions by dissipative
processes.

IV. CONCLUDING REMARKS

We have presented a generic case of a Hamiltonian sys-
tem with many degrees of freedom where, starting from a
perturbed equilibrium state, the transition to a self-consistent
nonlinear equilibrium characterized by large amplitude

FIG. 4. (Color online) Time behavior of the normalized field
amplitudeA=sI /Nd1/2 at D=2 with sh=0.01d and withoutsh=0d
dissipation.

FIG. 5. (Color online) Time behavior of the finite time maxi-
mum Lyapunov exponents for the same parameters of Fig. 4.

D. FARINA AND R. POZZOLI PHYSICAL REVIEW E70, 036407(2004)

036407-4



nonlinear oscillations is always connected to an increase of
stochasticityss`.0d and have correlated this process to the
evolution of the time-dependent maximum Lyapunov expo-
nentsstd. We have shown that such transition can also occur

in a otherwise stable system if a weakly dissipative mecha-
nism, as radiation damping or friction, is taken into account,
and that it is marked by a sharp variation ofsstd, as in the
Hamiltonian case.
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