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Taking the beam-plasma system as a reference Hamiltonian system with many degrees of freedom, the
connection between the development of large amplitude oscillations and stochasticity of the(systsured
through the time-dependent maximum Lyapunov exponisriivestigated. It is found that the development of
self-consistent large amplitude oscillations occurs in correspondence with the onset of chaos, and is related to
a well defined change of topology of the phase space of the system. It is also shown tliBliaimionian
linearly stable regime the development of large amplitude oscillations can occur when weakly dissipative
processes are introduced.
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[. INTRODUCTION resentative point in theN-dimensional phase space, the de-
gree of stochasticity of the system being measured by the
The nonlinear development of a perturbation in a colli-value of the largest Lyapunov exponent. The aim of the
sionless plasma is a topic thoroughly investigated in the litpresent paper is to find the relation between the onset of
erature, both analytically and numerical~3]. Even in its  stochasticity in the dynamics of the system and the transition
simplest, one-dimensional, formulation, it can reveal newo a nonlinear stage characterized by large field amplitude
features, which happen to be of interest for a variety ofpscillations.
physical systems, whenever these features derive from the The main result is the following: the development of self
quite generic Hamiltonian structure of the system, as in theonsistent large oscillations entails the occurrence of sto-
present case. Here, we refer explicitly to a beam-plasma sysghasticity, i.e., starting from a condition with vanishingly
tem, which can be considered a paradigm for the study omall field, large oscillations can be excited in the Hamil-
plasma-wave interaction and vortex formation in phaseonian system only when stochasticity arises. This process is
space, and perform a Hamiltonian analysis, which can theresonnected to a topological transition in thal-Bimensional
fore be directly extended to other systems, e.g., Comptophase space of the beam. Such a transition can occur even
FEL [4], self-interacting star§5], interacting vortices in 2D when the system is initially linearly stable, if a dissipative
fluids [6], the common link among them being the structuremechanism is taken into account, which relaxes the Hamil-
of the N- particle Hamiltonian. tonian constraints. We show that this occurs in the system
The system is initially very close to an equilibrium con- under consideration, when radiation damping or frictional
dition where the field is almost zero, and energy and momerneffects are introduced.
tum mostly reside in the particles. It is then followed during  The phase space analysis of the dynamics of the system is
its whole evolution, looking for conditions where self- presented in Sec. II. The analysis of stochasticity and the role
sustained large oscillations of the field are produced. Thigf weakly dissipative effects are presented in Sec. Ill. The
process is studied in the literature using either the fullast section is devoted to short concluding remarks.
Vlasov-Poisson system, or the corresponding Hamiltonian
model, in which the beam is represented by an ensemble of Il. PHASE SPACE ANALYSIS
N particles. It is found that a single parametercharacter-
izes the system evolution: when its value is larger than a well The system is made up of a monoenergetic beam, of den-
defined critical valueA, (linear or stable regimethe field ~ sity n, and velocityVy, represented b particles; a Max-
amplitude exhibits small periodic deviations from its initial wellian electron bulk, of density,, which responds linearly
value during the whole evolution; when< A (nonlinear or  to the field, through the dielectric permittivig(k, »), and a
“unstable” regimg large amplitude oscillations of the field cold, uniform ion background, providing charge neutrality.
occur on the long time scale. Note that, as far as the lineaFhe electric field is determined self-consistently by the Pois-
analysis is valid, the motion of thié-particle system is fully ~son equation, and is initially present as a seed, i.e., as a
integrable, and stochasticity is absent: this applies both to thelasma wave with very small amplitude. Phase velocities
stable regime and to the initial stage of the unstable regimenuch larger than the electron thermal speed are ass{Bhed
Therefore, stochasticity, if arises, can occur only in the fullyThe beam distribution function can be written dg
nonlinear regime. Here, stochasticity refers to khearticle =1/(L2Lv2L)EJ!\'=15(X—X]-)5(v—VJ-), whereL , andv, formally
system representing the beam, i.e., to the motion of the repepresent thétransversgscales of the system in configura-

1539-3755/2004/13)/0364075)/$22.50 70036407-1 ©2004 The American Physical Society



D. FARINAAND R. POZZOLI PHYSICAL REVIEW E70, 036407(2004)

tion and velocity space. The beam densifyis related toN

by N=nyL2L, where L denotes the assumed periodicity 1
length of the system along Under the simplifying assump-

tion of a single wave mode, the self-consistent dynamics of

the system is described by the following time independent
Hamiltonian withN+1 degrees of freedom: << 0.1

N N
1 |
H(O, Py, 1) = 5121 P? - 2\/5121 codf,-¢), (1)

where all variables are dimensionless, the canonical mo-
menta P; are related to the particle velocitieg by P;
=ﬂ'2/3(k\/j—wo)/wp, and the phaseej to particle positions FIG. 1. (Color online Time behavior of the field amplituda
X; by 6,=kX;, wherek=2m/L, f?=np/ (Nowyl|d,eol), andwg = (I/N)¥2=(A~-; P,/N)Y2 for different values ofA.

the solution of the relevant dispersion relatietk, w)=0,
with d,€,=(del dw),=,,. The action-angle variablds ¢ are
related to the dimensional electric fiele by E

0.01

stages can be identified in the time evolution of the field.
Initially, there is a lethargy stagéor 7=<|Im(\)|™1), in which

—op 43, 2 12 g ey — : i -
=2p wpm/ek(”w _sm(k>_< ‘Q‘ Th‘j,g“me vanabl_e rel the field amplitude is determined by all the three roots of the
evant to the Hamiltonial) is 7=tw,B~". The essential fea- dispersion, then the field grows exponentially as

tu_res O.f thg fully nonlmeay dyr_nam|cs of the sy;tem are.re'exp[|lm()\)|r], and finally it saturates and oscillates around a
tained in this model, even if a single wavelength is taken int

o . %inite value. The time behavior of the normalized field am-
2‘[(:r?tucr)1ft[r111c17t]|o;1rhe Hamiltonian(1) has the following con- i e A 'with A= (1/N)¥2=(A-3; P,/N)M2 solution of the
' Hamilton equations derived by E€), is shown in Fig. 1 for
> P+l => Pio+1o=NA, (2 different values ofA, corresponding to stable and unstable
j j cases. It can be observed that the linear solution is also valid

where A is a constant. Here, we are interested in the timefor almost the whole exponential phase in the unstable re-

; o . ) gime.
behavior of the system for a specific initial condition, i.e., a . . . L
small field perturgation(d /sz< 1), and an almost mono- We now consider the nonlinear investigation of the sys-
chromatic beam. In thisocase the ’parameNAr represents tem. From Eq(1) by means of a canonical transformation,

L ; nd using the constant of motion, one obtair$ degrees of
the initial momentum of the beam in the wave frame, an g 9

A=[26/ (@] @) [PV Vg~ 1), here Vi is the phase | ceoom Hamiltonian

velocity of the plasma wave for the case under consideration. 1 R N

It is found that the behavior of this system critically depends H(q;,p) = 52 (pj+A)?= 2= (p) X cosq;,  (4)
on A [1]. When A is larger than the critical valué\. =1 =1
=3/2?3~1.89, the field amplitude remains very small dur- wherep;=P;-A, q;=6,—, the symbol - '>:2i,11(' -)/N de-

ing the whole evolution of the system, and the beam elec;, ;oo average over thé particles, and the constant of mo-

trons move very close to their. unperturbgd orbits. Whertion now readd +>p,=0. The relevant Hamilton equations
A <A (i.e., at lower beam velocity or/and higher beam den- o4 J

sity) a considerable fraction of the beam energy can be trans-

ferred to the plasma waves. This specific behavior of the q]' =gHIdp;=p, +A+<Cosq>/\e"—<p>, (5a)

system has been observed and analyzed in detail for the

Compton regime of a free-electron lagsee, e.g., Ref4], bi=-dHIdq = - 2\'Tp>sin a (5b)
i~ i~ / -

and references thergin

Assuming that the electric field is small and behaves aghe Hamiltonian(4) can be defined as a “paradigmatic”
exp(iA7), the following dispersion relation can be obtained Hamiltonian for many different physical systems with a self-
from the linearized dynamics of the systef) around the consistent dynamics. It describéspendulums nonlinearly
given initial condition[4] coupledl,/zwhere the self-consistent field has the amplitude

3 2 — =(=(p)*~
M- ANH1=0. ®) To get a further understanding of the main features of the

For A> A, Eq.(3) has three real solutions corresponding tosystem, we present here the results relevant to the phase
stable modes, while foA <A, there are one real and two space topology of the Hamiltonigd), which allows one to
complex conjugate solutions, and the field evolution is dejpoint out the global, long lasting characteristic of the system.
scribed by the proper superposition of the three linear modedt is found [4] that the phase space is characterized by the
Quite naturally, the perturbative analysis of the system depresence of a large number of stationary points of mixed
scribes correctly the evolution of the system as long as theature in the R-dimensional phase spa¢e2N-1, the exact
field is small. In the unstable case, the results of the analysisumber depending on the value df). Among all these
are valid for short time, and fail in the asymptotic limit due points, there is an elliptic point of coordinatgs=0, p;=pe
to the presence of the exponentially growing solution. Thredj=1,N) for any A value, and a hyperbolic point, character-
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FIG. 3. (Color onling Time behavior of the finite time maxi-
mum Lyapunov exponent for N=50, and the sama values of
Fig. 1.

responsible for the nonlinear field oscillations, as it has been
pointed out in Ref[3].

Note that this kind of plots are not Poincaré sections,
being obtained just as a projection of the filldegrees of
freedom dynamics on theg,p) plane. The investigation of

6L § such plots does not, in general, allow one to draw definite
| w w statements about the stochasticity of a system. Even a inte-
-1 05 0 0.5 1 grable N-dimensional system, such as, e.g., thatNofun-
®) a/m coupled pendulums, can produce similar plots. Therefore, a

more detailed analysis of the stochastic properties of the sys-

FIG. 2. 2D phase space portrait of late time evolution of thetem described by the Hamiltonia) is required.

beam particles in an unstable case, f+1C°, =200, and two

different A values. Casé€a) corresponds ta=1.88 and casé) to Il STOCHASTICITY AND THE ROLE OF DISSIPATION

A=0. The coordinates of the elliptic point agg=0, p;=p=-2.51, '

and g;=0, pj=pe=-1, respectively. The initial distribution corre-  To investigate the chaotic dynamics of the system de-

sponds to a monochromatic beam, i.e., uniformgimnd pj=-2  scribed by the Hamiltonia4), the maximum Lyapunov ex-

X 10°* ponento,, (as defined, e.g., in Ref8]) has been numerically
computed for the given initial condition, following the

ized byq;=m, pj=pn, (j=1,N) only for A=A.. In the above method outlined by Wolét al. in Ref.[9]. The used numeri-

expression®, and p,, are solutions of the equation cal procedure also determines at any time the finite time
Lyapunov exponentr(7), which tends asymptotically to...
AS=AA-a=0, (6) The time evolution ofr(7) is shown in Fig. 3, for differenA
values in a range close th,.
with A=(-p)*2, and a=(cosq)=+1, respectively. Note For A values corresponding to the stable regime> A.),

that A corresponds to the field amplitude of a system init is found thato decays in time asymptotically following a
which all the particles are in the fixed paisit Comparing power lawo 7%, with « of order unity, indicating the ab-
Egs.(3) and(6), it is found that the transition to the linearly sence of stochasticity in the considered system. In the case of
unstable regiméA <A.) corresponds to the occurrence of athe unstable regiméA <A,), during the lethargy stage the
topological change in phase space, where the only hyperbolignite time Lyapunov exponent decays as in the stable case,
point disappears. then in the exponential stage of the motion it increases
A representation of the phase space region where the meharply, and when the nonlinear oscillating regifat large
tion of the system occurs is given in Fig. 2, where the paramplitudeg is established it finally saturates. Asymptotically
ticle coordinategq;, p;) are plotted in a 2D spade, p), after  in time, o tends to a finite valuer,.,, which is almost inde-
a large number of nonlinear oscillations in the unstable rependent ofA. Tests have been made firvalues up to 200.
gime, for two differentA values. The initial monochromatic The numerically obtained value ef, is about 0.3, and de-
distribution evolves and in the nonlinear saturated stag@ends slightly orN and on the finak. The value ofe., can
spreads in phase space around the elliptic point determindse assumed as an index of the degree of mixing of the phase
by Eqg. (6). The formation of a hole in the single particle space region where the motion of the system occurs. We
phase space can be observed, which is quite largeAfor have thus shown that the observed sharp variation of the
values close to the critical valuk.. For decreasind values, finite-time Lyapunov exponent is related to the phase transi-
the hole in phase space shrinks, and the presence of a weibn in the 2N-dimensional phase space of the system.
definite bunch of particles becomes more apparent. This We have then investigated the role of weakly dissipative
bunch rotates in time around the elliptic point, and is mainlyeffects, noting that they can allow a stable condition to be-
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come unstable during the evolution of the system, since the ' ' '
Hamiltonian constraints are relaxed. In our investigation, we 1
have first considered radiation damping, as a generic process

which alters the Hamiltonian dynamics. It denotes the reac- n=0.01
tion force that is included in the motion equation of the par-

ticle to take into account the fact that energy is being carried < 01
out from the system by the waves. It has been shown to play

an important role in different fields, such as, e.g., in accel- A
erator physics, in gravitation physics, in the long time evo- llr
lution of Vlasov-Poisson systerfil(], in the dynamics of ) . |
earthquakes and brittle failures of materials where seismic 0 100 200 300 400 500
waves or phonons are radiatgtll], and in general in sys- T

tems where Hamiltonians similar to this one can be used.

Note that its presence does not necessarily require emission FIG. 4. (Color onling Time behavior of the normalized field
of electromagnetic waves from the system. Here radiatio@mPplitudeA=(1/N)? at A=2 with (#=0.0) and without(»=0)

damping is used as a paradigm of dissipative effects. dissipation.
To include these effects in the Hamiltonian description,
we modify the momentum equation, changimgn p;—»p;,  served in the unstable conservative case for the correspond-

where 7 is a constant parameter ajilis computed differ- ing field amplitudes, and finally on the long time scale it
entiating Eq.(5b), and using the systertb). This way of  slowly decays.

computing the radiation damping, which is in general ap- To test the generic validity of our results, we have con-
proximate, turns to be exact in the electromagnetic €a8  sidered also other different dissipation terms, such as, e.g., a
Then, instead of systeifd), the following equations are ob- friction force term to mimic the collisional drag on beam

tained: electrons. Although the detailed dynamics is different in the
_ two casegbeing mainly dependent on the specific choice of
q;=p;+A+(cosq)A, (7Ta)  the dissipative teri quite similar results have been obtained

concerning the transition from the stable to the unstable re-

b = - 2A sin q; - 27f(q;.p;, A, (7b) gime, and the related behavior of the finite time Lyapunov

exponent. Again a sudden rise in the valueotf) occurs
_ when the wave amplitudé becomes finite. We then con-
A=(sinq), (7c)  clude that the transition to the unstable regime can develop
from conditions for which the system is stalfiee., when the
where initial beam energy is too large to trigger the instab)lity it
is brought naturally to favorable conditions by dissipative
f(g;,p;,A) = (sin g)sin g; + (cosg)cosq; + (p; + A)A cosq;.  processes.

()

Note that “momentum” conservation does not hold anymore. IV. CONCLUDING REMARKS
To point out the main effects of the dissipation term, we

use arbitraryz values here, which allow one to describe e have presented a generic case of a Hamiltonian sys-
important modifications of the motion in a “short” computer (o m, with many degrees of freedom where, starting from a
time, while being always small enough to describe a slowlysertyrhed equilibrium state, the transition to a self-consistent

varying perturbation of the Hamiltonian dynamics. nonlinear equilibrium characterized by large amplitude
It is found that initially stable conditions evolve towards

instability at long times, and amplification of the electric
field can occur, as it is shown in Fig. 4, where the time 1
evolution of the amplitudeA is plotted for a conservative
stable case(7=0) and for a slightly dissipative casen
<1) for the same initial value of the parameter- A.. Note 0.1
that the nonlinear field oscillations in the saturated regime
are damped by the “dissipation term,” and that the system in ©
the 2\ phase space collapses in the elliptic point asymptoti- 0.01
cally in time.

The transition to the high-field regime is again accompa-
nied by a sharp modification of the time evolution of the 0.001
finite time maximum Lyapunov exponent, which is shown in
Fig. 5. In the dissipative cage;>0), o initially behaves as
in the conservative cage)=0), then jumps to a higher value  FIG. 5. (Color onling Time behavior of the finite time maxi-
when the field amplitude increases, similarly to what ob-mum Lyapunov exponent for the same parameters of Fig. 4.

0 100 200 300 400 500
T
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nonlinear oscillations is always connected to an increase dh a otherwise stable system if a weakly dissipative mecha-
stochasticity(o..> 0) and have correlated this process to thenism, as radiation damping or friction, is taken into account,
evolution of the time-dependent maximum Lyapunov expo-and that it is marked by a sharp variation &), as in the
nento(7). We have shown that such transition can also occuHamiltonian case.
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